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When Measurement Errors Correlate with Truth:
Surprising Effects of Nondifferential Misclassification
Sholom Wacholder

Most of the literature on the effect of nondifferential misclas-
sification and errors in variables either addresses binary expo-
sure variables or discusses continuous variables in the classical
error model, where the error is assumed to be uncorrelated with
the true value. In both of these situations, an imperfectly
measured exposure always attenuates the relation, at least in
the univariate setting. Furthermore, measuring a confounder
with error independent of the exposure, even while measuring

the exposure of interest perfectly, leads to partial control of the
confounding. For many variables measured in epidemiology,
particularly those based on self-report, however, errors are
often correlated with the true value, and these rules may not
apply. Epidemiologists need to be wary of deviations from the
classical error model, since poor measurement might occasion-
ally explain a positive finding even when the error does not
differ by disease status. (Epidemiology 1995;6:157-161)

Keywords: bias, biometry, environmental exposure, epidemiologic methods, occupational exposure, odds ratio, sensitivity and

specificity, regression analysis, statistics.

Epidemiologists often must use data measured with error.
Sometimes we can rely on statistical demonstrations
that the errors will affect parameter estimates in predict-
able ways.!? In particular, estimates of relative risk will
be biased toward but not beyond the null for binary
exposures and for continuous variables under the classi-
cal error model, in which errors are assumed to be
independent of the true value. In this paper, I discuss a
more general error model that encompasses the situation
of errors related to the true value. I present the condi-
tions under which estimates of effect or regression esti-
mates can be exaggerated or can reverse direction. By
considering the more general situation, one can recon-
cile some recent work with some of the earlier epidemi-
ology literature in this area.

Error Models

-CrassicaL ERROR MODEL

The classical error model assumes that the magnitude
and direction of the error in measuring a variable do not
depend on its true value. Thus, the errors in measuring
large and small values will have the same average value,
for example. In the classical error model, the observed
variable Z is related to the true value X according to:

Z=X+E (1)

where E, the error in measuring X, is assumed to have mean
zero and be independent of X. That is, the direction and
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magnitude of the errors of measurement are not related to
the actual value of X. This model is realistic in many
circumstances, such as when errors are the consequence of
sloppy laboratory téchnique or difficulty in using an in-
sttument. Under the classical error model, the slope of the
regression of Z on X would be 1 and the intercept O.

AN ALTERNATIVE TO THE CLASSICAL ERROR MODEL
In many common situations in epidemiology, the clas-

sical error model does not hold. When Z is a self- .

reported value, it seems unrealistic to expect errors to be
independent of true values. For example, errors in self-

- reported height and weight seldom follow model 1, since

the errors do not have mean zero and are correlated with
the true value.>* Also, it is possible that those who eat
smaller amounts of a nutrient may tend to overreport,
whereas those who eat larger amounts may underreport
consumption.’

A more general error model® that allows E to be
correlated with X needs to be considered. Let o? =
var(X), @* = var(E), ¢ = cov(X,E), and the correlation
of X and E be p = ¢/(ow). The bias factor in this error
model, given by equation 8.8 of Cochran,® is the ratio of
the slope 1y of the regression of dependent variable Y on
the observed value of the independent variable Z rela-
tive to the slope B of the regression of Y on the true
values of the independent variable X:

Y o’ + ¢
BIAS*B_02+2¢+w2
(2)

o + pow

T ot + 2pow + w

2
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The special case of p = 0 is the classical error model, in
which expression 2 reduces to the attenuation factor’:

2

BIAS = (3)

ot + o
bounded between O and 1. In the more general model 2,
the bias factor can be negative or greater than one. So
perhaps the term “attenuation factor” is misleading, and
“distortion factor” better reflects the more general situ-
ation.

Implications of the General Error Model for
Univariate Regression
Exaggeration and reversal of regression coefficients are
both possible. Table 1 displays the distortion factor from
Eq 2 as a function of the ratio 0%/w? and p, the correla-
tion between X and E. Simple algebraic manipulation of
expression 2 confirms the suggestion of the table that y
> B, that is, there is exaggeration or deattenuation of
the regression effect, when ¢ < —¢?, or equivalently,
when p < —w/o. Thus, when @ < ¢?, that is, the error
variance is less than the variance of X, a strong negative
correlation between X and E can result in bias effects
that are not possible under the classical error model.
When o’ > ¢?, exaggeration cannot occur since p is
always greater than —1. Even when p < —w/a, there
cannot be substantial exaggeration, as shown in Table 1.

Reversal of direction of effect can occur when ¢ <
—o?, or equivalently, p < —a/w. Thus, reversal requires
that the error variance be greater than the population
variance, as well as a strong negative correlation be-
tween X and E.

When p = —w/o, thete is no bias from estimating 7y

“instead of B. This phenomenon is equivalent to the

Berkson error model,>™® in which E is uncorrelated with
Z, rather than E uncorrelated with X, as in the classical
error model. The distortion factor from Eq 2 is 1 in the
Berkson model [since O = cov(Z,E) = cov(X + E,E) =
¢ + ¥, and, therefore, there is no bias in estimating 3.
Berkson’ gave the example of a bioassay of a material
assigned to have dose level Z (in our notation) but
actually receiving level X, where it seems reasonable to
assume that the measurement error E = Z — X is
independent of Z.

TABLE 1.
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This approach is useful even when there is bias in Z,
that is, the mean of E is not zero. We illustrate the point
with the error model Z = a + sX for intercept a and
slope s; for simplicity, no stochastic element is allowed
in Z. Clearly, a regression model with coefficient 8 > 0
for X will have coefficient y = Bfs for Z. Here, E = Z —
X = a + (1 — $)X, so, assuming, without loss of gener-
ality, o* = 1 implies o> = (1 —s)}, p= —land ¢ =
—(1 — s5). Thus, s > 1 implies v < B; s < 1 implies y >
B; and s < 0 implies y < 0 < B. A special case, resulting
from catastrophic error, is Z = —X, (a =0and s = —1),
where the bias factor is —1.

PLots

The possible impact of different forms of error on linear
regression estimates is demonstrated graphically in Fig-
ure 1, using hypothetical data found in Table 2. In this
simple example, 02 = var(X) is 2, the slope B is 1, and
var(Y1X) is 0. The solid line in each plot is the regression
of Y on the true'values of X. The broken line in each plot
displays the regression of Y on Z = X + E together with
the points (Y,Z) for a specified error structure. In the
classical error model, E is uncorrelated with X, and, so,
by Eq 3, the slope of Y on Z is attenuated by the factor
1/(1 + w¥a?) = 1[1 + var(E;)/var(X)] = 0.87. In the
plot with the Berkson error model, ¢ = —0.8, &* = 0.8,
and cov(E,;,Z,) = cov(E,, X + E;) = cov(EX) +
var(E,) = 0, leading to a bias factor of (2 — 1.6)/(2 —
2+ 1.6 + 1.6) = 1; that is, no bias. When the error is
negatively [cov(X,E) = ¢ = —1.6] or positively (¢ =
+1.6) correlated with X, the bias factors for the slope
can be calculated from Eq 2, using @® = 1.3, as (2 —
1.6)/(2 —2-16 +13) =4and (2 + 1.6)/(2 + 2 -
1.6 + 1.3) = 0.55.

These results follow the theory described in earlier
subsections. For error independent of or positively cor-
related with the true value, the slopes are attenuated, as
always. For error negatively correlated with the true
value, the slope can be exaggerated or unchanged as
shown in the figure, attenuated when there is a weak
negative correlation between X and E, or reversed
in direction when w? = var(E) is much greater than
var(X) = o2

Bias Factor as a Function of var(E)/var(X) = «?/o? and corr(X, E) = p (Based on Eq 2)

p
1 w*o? -1 -0.75 -0.5 -0.25 0 0.25 05 0.75 1
E s 0.01 1.1 1.1 1.04 1.02 0.99 0.97 0.95 0.93 091
3 | 0.1 1.5 1.2 1.07 0.98 0.91 0.86 0.82 0.79 0.76
b i | 0.5 34 1.1 0.82 0.72 0.67 0.64 0.61 0.60 0.59
1 0.8 9.5 0.72 0.61 0.57 0.56 0.54 0.54 0.53 0.53
by ‘J‘ | 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
il 1.25 ~8.5 0.28 0.39 0.43 0.44 0.46 0.46 0.47 047
. 2 —24 —0.069 - 0.18 0.28 033 0.365 0.39 0.40 041
o 10 —0.46 -0.22 -0.074 0.022 0.091 0.14 0.18 0.21 0.24
B . 50 -0.16 -0.11 -0.058 —0.016 0.020 0.051 0.078 0.10 0.12
| ] 100 —0.11 —0.076 —0.044 —0.016 0.0099 0.033 0.054 0.073 0.091
i |
p
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FIGURE 1. Plot of points and regression lines from hypo-
thetical true and observed data for several error structures.
In each plot, the points (X,Y) and (Z,Y) are represented by a
closed and an open square, respectively. The solid and broken
lines are the regressions of Y on X and on Z, respectively. In
the Berkson error model, the two regression lines are iden-
tical.

TABLE 2. Hypothetical Data Used in Plots

E
Negative Positive
Cor- Cor-
X =Y Classical Berkson relation relation
-2 -0.6 2.0 -1.5 1.5
-1 0.6 00 -1.0 1.0
0 0 0.0 0 0
1 0.6 0.0 1.0 -1.0
2 —0.6 -2.0 1.5 -1.5
¢ = cov(X, E) 0 -1.6 16 -1.6
Variance 2 0.29 1.6 13 L3

BiNaRY REGRESSION VARIABLES

Misclassified binary variables always have been treated
as a separate case, since the classical error model 1
clearly does not apply. Nonetheless, the impact of the
misclassification is also attenuation of the effect (except
in extreme conditions). Algebra in the appendix shows
that the well-known results for binary X are simply a
special case of the general error model 2.

TRENDS IN POLYTOMOUS REGRESSION VARIABLES

The estimate of trend for a polytomous exposure variable
is really an estimate of the slope of the regression on a
continuous variable. Thus, one can easily demonstrate
the possibility of an exaggerated or reversed trend from
analysis of epidemiologic data with a misclassified polyt-
omous exposute. The left panel of Table 2 in the study
by Dosemeci et al'? is an example with logistic analysis of
case-control data. A similar example for a cohort study
analyzed by Poisson regression can be constructed easily.
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Of course, when there are only two levels of exposure,
the binary results described in the previous subsection

apply.

SUMMARY OF UNIVARIATE RESULTS

One can see that it is possible to have exaggeration or
reversal of the slope of a univariate tegression on a
continuous variable or in a univariate logistic regression
even when the errors are nondifferential. The general
formulation encompasses binary variables and other im-
portant special cases not considered by the classical error
model.

Negative correlation between the error and the true
value for exposure will occur in many situations: for
example, when the misclassification at higher levels of
exposure tends to be toward a lower level, whereas there
is either little misclassification at lower levels of expo-
sure or the misclassification at lower levels tends to be
toward a higher level.

In a multivariate setting, these results apply directly to
the slope of the regression of Y on X (with variances and
covariances made conditional on other variables in the
model), as long as there is no error in the other covari-
ables. A more general formulation of this errors-in-
variables model would account for the possibility of
correlated errors among several covariates, thereby in-
cluding polytomous exposure variables. In the next sec-
tion, the effect of errors in a confounding variable on the

*adjusted estimate of effect of an exposure variable mea-

sured without error is considered.

Implications for Confounding Variables

Several articles in the literature>>!-1* have claimed that
when a confounding variable is measured with error that
is independent of both exposure and disease, whereas the
exposure variable is measured without error, partial con-
trol of the confounder is achieved, that is, the adjusted
estimate lies between the crude estimate and the esti-
mate that would have been obtained had the confourider
been measured without error. Although true when ‘the
confounder is binary, Brenner!® recently demonstrated
that the claim is false for a polytomous confounder. I will
show that the claim holds for linear regression under the
classical error model-but not when errors are correlated
to the true value of a continuous confounder. Consider
the regression model:

E(Y) = Bo + BiXi + BXa 4)
One property of confounding is that
B = BI + Suba (5)

where B] is the slope from the crude regression of Y on
X,, and S,; is the slope of the regression of X, on X,
(equation 17.11.1 in Snedecor and Cochran’s text?). If
Z, is the observed value of X, the regression model

E(Y) = v + nXi + v, (6)
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is fit instead of model 4. If we observe Z, = X, + E, but
Z, = X, is observed without error, it is possible that
either y, > B, > 0 [when E; is nondifferential for Y and
cov(E;,X,) < —var(X,)], or that y, <0 < B,, as noted
in the previous section. If y, > B; > 0; the slopes of the
regressions of X; and Z, on X; are equal; and E, is
nondifferential for Y, then vy, = B + Suy, > Bi +
S,1B; = By > Bi. That is, the estimate adjusted for the
covariate measured with error does not lie between the
crude and the correctly adjusted values. If the classical
error model holds, B, > vy, > 0, and the adjusted
estimate would indeed be bounded.

When cov(E,,Z,) = 0, that is, in the Berkson error
case, it can be shown that corresponding regression
coefficients in Eqs 4 and 6 are equal if the errors E, in X,
are independent of X;, conditional on X;. The two
factors in the correction term in Eq 5 are unchanged: B3,
by the Berkson ertor assumption, and S;; by the assump-
tion that E, is independent of X;, conditional on X,.

Thus, the theory for nondifferential error in the con-
founder independent of exposure parallels that of the
univariate case. Errors fitting the Berkson model produce
no bias. Errors in a binary confounder or errors that
follow the classical error model for a continuous con-
founder predictably control partially for confounding, so
it is better to adjust for a misclassified confounder than
not to adjust. But errors in a polytomous confounder or
errors correlated with the true value of a continuous

confounder may produce unpredictable bias. Indeed, er-
rors that strongly correlate with the true value of the
confounder or with the exposure can produce the appar-
ent anomaly that adjustment for a poorly measured vari-
able yields an estimate that is more biased than the
crude.

Discussion

Interpretation of epidemiologic findings can rely se-
curely upon the well-described attenuation of effect re-
sulting from nondifferential error in binary variables or
in continuous variables when the error is uncorrelated to
the true value. But epidemiologists need to be aware that
attenuation will not be assured when: (1) error is differ-
ential; (2) independent variables are polytomous; or (3)
independent variables are continuous with errors corre-
lated with the true value.

Thus, epidemiologists should not be too quick to
assert automatically that poor measurement cannot ex-
plain a positive finding. Furthermore, study designs that
tolerate unnecessary errors in one group so that errors are
not differential should be examined carefully. Strict ad-
herence to the principle of comparable accuracy used to
ensure nondifferential misclassification in choosing con-
trols for case-control studies may not be advisable when

it would require controls with as much error as cases

instead of more accurate controls.!®

Freedman et al' discuss the effects of dietary measure-
ment error on sample size requirements under the clas-
sical ‘error model assumption. Extensions of that work
might explicitly quantify the effect of the relation be-
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tween errors and the true values on study size; for exam-
ple, negative correlation between the true value and the
reported value would result in a smaller study size than

_when the values are uncorrelated.!”

The classical error model assumption (error is inde-
pendent of the true value) is often reasonable when
errors are entirely due to the observer, but may be
unrealistic when information is gathered from self-re-
ports. A tendency for respondents to give answers close
to socially acceptable norms would lead to violation of
the assumption; a person with a much higher than
average value would tend to give an answer below the
true value, whereas someone with a low value might
tend to reply with a positive error, resulting in the
“flattened-slope syndrome.” Thus, there would be a
negative correlation between the error and the true
value unless the errors for those with below average fat
consumption tend to be underreported even more.

I do not wish to overemphasize the frequency or
importance of exaggeration or reversal of the estimate of
effect of a continuous variable or of trend (Table 1).
Substantial exaggeration is probably rare, since a strong
negative correlation (say, p < —0.5) between error and
truth is required. Reversal of direction requires a strong
negative correlation and that the variance of the error be
greater than the variance of the true value. On the other
hand, the upper right-hand portion of Table 1, with
positive correlation and less variance in E than in X,
seems realistic in some situations where measurements
are related; there we see moderately more attenuation
than would be predicted by Eq 3, that is, by assuming
p = 0. Since it is difficult to assess the error structure or
observe p, w?, or o? except in the rare situation when a
gold standard is available,'® one cannot usually rely on
data to quantify the extent of bias precisely and must
often use information from outside the study to evaluate
the nature of the bias.

Considerations of error structure are important not
only in interpreting individual studies but also for meth-
ods of correcting for error. Some correction procedures
based on a validation study may not be robust against
departures from assumed error models. The incorrect
assumption of a classical error model, just like that of
nondifferential misclassification or of the infallibility of
an “alloyed” gold standard,'® can make the results of a
validation study misleading.

Rothman!® has suggested using nondifferential mis-
classification theory in choosing among several hypoth-
esized formulations of exposure. He argues that “the
closer the assumption is to the truth, the larger will be
the measured effect.”'%% But under the general error
model, regression on the incorrect form Z can result in a
higher slope and a stronger apparent association than
regression on X, so this procedure is not robust against
errors that do not follow the classical model. Indeed,
even when a continuous exposure is measured with
nondifferential error, categorization can induce differen-

tial misclassification and, hence, exaggeration of ef-
fect, 2021
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Consequences of errors in confounders can be serious,
even when nondifferential.''?22* Adjustment for pootly
measured polytomous'® or continuous confounders, even
when error or misclassification is independent of expo-
sure and disease, can result in a poorer estimate of the
adjusted effect than would be obtained by relying di-
rectly on the crude estimate. Some consideration should
be given to identifying when adjustment for poorly mea-
sured variables like socioeconomic status is likely to be
more biased than not adjusting at all. A similar point
holds for adjustment for total energy in studies of mac-
ronutrients, particularly since the errors in the exposure
and confounder are likely to be strongly correlated.

Epidemiologists have been misled by the emphasis on
the classical error model in the literature and by the
superficially similar result regarding the impact of mis-
classification of binary variables in a univariate model. [
have shown the danger of reliance on the binary variable
case or the classical error model. The more general error
model presented here illuminates some correct but seem-
ingly anomalous results showing reversal of direction in
trend or at some levels of a polytomous variable despite
nondifferential misclassification'®*-? and may help to
limit claims®»!1-14 that are not true in the general case.
Together with empirical investigations of error models
and mechanisms, admittedly daunting areas for research
given the scarcity of gold standards, it can also lead to a
more realistic understanding of the impact of imperfect
measurement of important epidemiologic variables.
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Appendix

In this appendix, the general error model results are applied for
a binary variable X. If Pr(X = 1) = pand Pr(X =0) =1 — p
and sensitivity s and specificity t, var(X) = o = p(l — p),
var(E) = o = —p*(t + s — 2)2 + p{2t? ~ 5t — 3s + 2st + 4)
+ ¢t~ ¢ and cov(X,E) = ¢ = —p(1 — p}(2 — s — ).
Comparison of ¢* and ¢ reveals that there is no apparent effect
when the sum of sensitivity and specificity equals one (s + t =
1), and reversal of direction when s + ¢ < 1, as noted often
before.16% Since an increase in E results in an increase in Z,
0 < cov(Z,E) = cov(X,E) + var(E), or ¢ > —w? and p >
—0o/w. Thus, by the results above, there can be no exaggeration
for misclassification of binary variables.




